Dr. Brian Smith Blow-up in the Parabolic Scalar Curvature Equation

ZEIT:

16.10.2006, 16:15 Uhr

ORT:

Freie Universität Berlin, Fachbereich Mathematik und Informatik Arnimallee 2-6, Raum 031

Consider a manifold foliated by topological 2-spheres. Suppose that the intrinsic geometry of the foliation spheres has been specified. We would like to obtain a manifold of prescribed scalar curvature in a non-conformal way by modifying the metric only in a direction transverse to the foliation spheres. That is, we want to find a function u so that the metric

$$
\mathrm{g}=\mathrm{u} 2 \mathrm{dr} 2+\mathrm{h}
$$

has the desired scalar curvature R, where r is the foliating function and h denotes the metric of the foliation spheres. If the area element of h is expanding with increasing r then this gives rise to a parabolic equation for u in which r plays the role of a time variable. It is easily seen by using the maximum principle that in many cases of physical interest the solution blows up at some finite value of r, say $r 1$. The purpose of this talk is to discuss a situation in which blow-up occurs in such a way that the metric can nonetheless be continuously extended up to
r1, which corresponds to a horizon.

Kontakt:

Humboldt-Universität zu Berlin. Institut für Mathematik
SFB 647 . Unter den Linden 6. 10099 Berlin

